Lewis Superacidic Heavy Pnictaalkene Cations: Comparative Assessment of Carbodicarbene-Stibenium and Carbodicarbene-Bismuthenium Ions

Inorg Chem. 2022 Nov 21;61(46):18640-18652. doi: 10.1021/acs.inorgchem.2c03135. Epub 2022 Nov 9.

Abstract

We report a comprehensive assessment of Lewis acidity for a series of carbone-stibenium and -bismuthenium ions using the Gutmann-Beckett (GB) method. These new antimony and bismuth cations have been synthesized by halide abstractions from (CDC)PnBr3 and [(pyCDC)PnBr2][Br] (CDC = carbodicarbene; Pn = Sb or Bi; py = pyridyl). The reaction of (CDC)SbBr3 (1) with one or two equivalents of AgNTf2 (NTf2 = bis(trifluoromethanesulfonyl)imide) or AgSbF6 gives stibaalkene mono- and dications of the form [(CDC)SbBr3-n][A]n (2-4; n = 1,2; A = NTf2 or SbF6). The stibaalkene trication [(CDC)2Sb][NTf2]3 (5) was also isolated and collectively these molecules fill the gap among the series of cationic pnictaalkenes. The Sb cations are compared to the related CDC-bismaalkene complexes 6-9. With the goal of preparing highly Lewis acidic compounds, a tridentate bis(pyridine)carbodicarbene (pyCDC) was used as a ligand to access [(pyCDC)PnBr2][Br] (10, 12) and trications [(pyCDC)Pn][NTf2]3 (Pn = Sb (11), Bi (13)), forgoing the need for a second CDC as used in the synthesis of 5. The bonding situation in these complexes is elucidated through electron density and energy decomposition analyses in combination with natural orbital for chemical valence theory. In each complex, there exists a CDC-Pn double bonding interaction, consisting of a strong σ-bond and a weaker π-bond, whereby the π-bond gradually strengthens with the increase in cationic charge in the complex. Notably, [(CDC)SbBr][NTf2]2 (4) has an acceptor number (AN) (84) that is comparable to quintessential Lewis acids such as BF3, and tricationic pnictaalkene complexes 11 and 13 exhibit strong Lewis acidity with ANs of 109 (Pn = Sb) and 84 (Pn = Bi), respectively, which are among the highest values reported for any antimony or bismuth cation. Moreover, the calculated fluoride ion affinities (FIAs) for 11 and 13 are 99.8 and 94.3 kcal/mol, respectively, which are larger than that of SbF5 (85.1 kcal/mol), which suggest that these cations are Lewis superacids.