Exosomal let-7f-5p derived from mineralized osteoblasts promotes the angiogenesis of endothelial cells via the DUSP1/Erk1/2 signaling pathway

J Tissue Eng Regen Med. 2022 Dec;16(12):1184-1195. doi: 10.1002/term.3358. Epub 2022 Nov 8.

Abstract

Blood vessel formation is the prerequisite for the survival and growth of tissue-engineered bone. Mineralized osteoblasts (MOBs) have been shown to regulate angiogenesis through the secretion of exosomes containing various pro-angiogenic factors. However, whether the mineralized osteoblast-derived exosomes (MOB-Exos) containing let-7f-5p can regulate the angiogenesis of endothelial cells (ECs) is still unknown. In this study, the angiogenic capabilities of ECs respectively treated with MOB-Exos, let-7f-5p mimicked MOB-Exos (miR mimic group), and let-7f-5p inhibited MOB-Exos (miR inhibitor group) were compared through in vitro and in vivo studies. Moreover, the potential mechanism of MOB-Exo let-7f-5p regulating angiogenesis was explored by verifying the role of the Erk1/2 signaling pathway and target gene DUSP1. The results showed that MOB-Exos could significantly promote the angiogenesis of ECs, which could be enhanced by mimicked exosomal let-7f-5p and attenuated by inhibited exosomal let-7f-5p. Let-7f-5p could suppress the luciferase activity of wide-type DUSP1, and the mutation of DUSP1 could abrogate the repressive ability of let-7f-5p. Furthermore, the expression of DUSP1 exhibited a reversed trend to that of pErk1/2. The expression of pErk1/2 was significantly higher in the miR mimic group and lower in the miR inhibitor group than that in the MOB-Exos group, while inhibition of pErk1/2 could partly impair the angiogenic capabilities of ECs. In conclusion, we concluded that exosomal let-7f-5p derived from MOBs could promote the angiogenesis of ECs via activating the DUSP1/Erk1/2 signaling pathway, which might be a promising target for promoting the angiogenesis of tissue-engineered bone.

Keywords: DUSP1; Erk1/2 signaling pathway; angiogenesis; endothelial cells; exosomes; let-7f-5p; osteoblasts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dual Specificity Phosphatase 1 / metabolism
  • Endothelial Cells / metabolism
  • Exosomes* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Neovascularization, Pathologic
  • Osteoblasts / metabolism
  • Signal Transduction

Substances

  • Dual Specificity Phosphatase 1
  • MicroRNAs