Real-world emission characteristics of semivolatile/intermediate-volatility organic compounds originating from nonroad construction machinery in the working process

Sci Total Environ. 2023 Feb 1;858(Pt 2):159970. doi: 10.1016/j.scitotenv.2022.159970. Epub 2022 Nov 5.

Abstract

Detailed emission characterization of semivolatile/intermediate-volatility organic compounds (S/IVOCs) originating from nonroad construction machines (NRCMs) remains lacking in China. Twenty-one NRCMs were evaluated with a portable emission measurement system in the working process. Gas phase S/IVOCs were collected by Tenax TA tubes and analyzed via thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Particle phase S/IVOCs were collected by quartz filters and analyzed via GC-MS. The average emission factors (EFs) for fuel-based total (gas + particle phase) IVOCs and SVOCs of the assessed NRCMs were 221.45 ± 194.60 and 11.68 ± 10.67 mg/kg fuel, respectively. Compared to excavators, the average IVOC and SVOC EFs of loaders were 1.32 and 1.55 times higher, respectively. Compared to the working mode, the average IVOC EFs under the moving mode (only moving forward or backward) were 1.28 times higher. The IVOC and SVOC EFs for excavators decreased by 69.06% and 38.37%, respectively, from China II to China III. These results demonstrate the effectiveness of emission control regulations. In regard to individual NRCMs, excavators and loaders were affected differently by emission standards. The volatility distribution demonstrated that IVOCs and SVOCs were dominated by gas- and particle-phase compounds, respectively. The mode of operation also affected S/IVOC gas-particle partitioning. Combined with previous studies, the mechanical type significantly affected the volatility distribution of IVOCs. IVOCs from higher volatile fuels are more distributed in the high-volatility interval. The total secondary organic aerosol (SOA) production potential was 104.36 ± 79.67 mg/kg fuel, which originated from VOCs (19.98%), IVOCs (73.87%), and SVOCs (6.15%). IVOCs were a larger SOA precursor than VOCs and SVOCs. In addition, normal (n-) alkanes were suitably correlated with IVOCs, which may represent a backup solution to quantify IVOC EFs. This work provides experimental data support for the refinement of the emission characteristics and emission inventories of S/IVOCs originating from NRCMs.

Keywords: Construction machinery; Emission factor; S/IVOCs; Secondary organic aerosols.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants* / analysis
  • Alkanes / analysis
  • Gas Chromatography-Mass Spectrometry
  • Vehicle Emissions / analysis
  • Volatile Organic Compounds* / analysis

Substances

  • Volatile Organic Compounds
  • Vehicle Emissions
  • Aerosols
  • Alkanes
  • Air Pollutants