pCO2-driven seawater acidification affects aqueous-phase copper toxicity in juvenile flounder Paralichthys olivaceus: Metal accumulation, antioxidant defenses and detoxification in livers

Sci Total Environ. 2023 Feb 1;858(Pt 3):160040. doi: 10.1016/j.scitotenv.2022.160040. Epub 2022 Nov 5.

Abstract

Ocean acidification potentially influences the biotoxicity of metals and the antioxidant defense systems of marine organisms. This study investigated how pCO2-driven seawater acidification (SA) affected aqueous-phase copper (Cu) toxicity in the juvenile flounder Paralichthys olivaceus from the perspective of hepatic oxidative stress and damage to better understand the mechanisms underlying the biological effects produced by the two stressors. Fish were exposed to aqueous-phase Cu at relevant ambient and polluted concentrations (0, 5, 10, 50, 100 and 200 μg L-1) at different pH levels (no SA: pH 8.10; moderate SA: pH 7.70, pCO2 ∼1353.89 μatm; extreme SA: pH 7.30, pCO2 ∼3471.27 μatm) for 28 days. A battery of biomarkers in the livers was examined to investigate their roles in antioxidant defense and detoxification in response to coexposure. Hepatic Cu accumulation (30.22-184.90 mg kg-1) was positively correlated with Cu concentrations. The biomarkers responded adaptively to different redox states following SA and Cu exposure. In unacidified seawater, increases in Cu concentrations significantly induced hepatic lipid peroxidation (LPO, by up to 27.03 %), although compensatory responses in antioxidant defenses and detoxification were activated. Moderate SA helped maintain hepatic redox homeostasis and alleviated LPO through different defense strategies, depending on Cu concentrations. Under extreme SA, antioxidant-based defenses were activated to cope with oxidative stress at ambient-low Cu concentrations but failed to defend against Cu toxicity at polluted Cu levels, and LPO (by up to 63.90 %) was significantly induced. Additionally, thiols (GSH and MT) responded actively to cope with Cu toxicity under SA. SOD, CAT, EROD, and GST were also sensitively involved in defending against hepatic oxidative stress during coexposure. These findings highlight the notable interactive effects of SA and Cu and provide a basis for understanding antioxidant-based defenses in marine fish confronting environmental challenges.

Keywords: Biotransformation; Heavy metal; Integrative response; Marine fish; Ocean acidification; Oxidative stress.

MeSH terms

  • Animals
  • Antioxidants
  • Copper* / toxicity
  • Flounder*
  • Hydrogen-Ion Concentration
  • Ocean Acidification
  • Seawater

Substances

  • Copper
  • Antioxidants