Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes

Nat Commun. 2022 Nov 7;13(1):6709. doi: 10.1038/s41467-022-34172-1.

Abstract

The transport of water through nanoscale capillaries/pores plays a prominent role in biology, ionic/molecular separations, water treatment and protective applications. However, the mechanisms of water and vapor transport through nanoscale confinements remain to be fully understood. Angstrom-scale pores (~2.8-6.6 Å) introduced into the atomically thin graphene lattice represent ideal model systems to probe water transport at the molecular-length scale with short pores (aspect ratio ~1-1.9) i.e., pore diameters approach the pore length (~3.4 Å) at the theoretical limit of material thickness. Here, we report on orders of magnitude differences (~80×) between transport of water vapor (~44.2-52.4 g m-2 day-1 Pa-1) and liquid water (0.6-2 g m-2 day-1 Pa-1) through nanopores (~2.8-6.6 Å in diameter) in monolayer graphene and rationalize this difference via a flow resistance model in which liquid water permeation occurs near the continuum regime whereas water vapor transport occurs in the free molecular flow regime. We demonstrate centimeter-scale atomically thin graphene membranes with up to an order of magnitude higher water vapor transport rate (~5.4-6.1 × 104 g m-2 day-1) than most commercially available ultra-breathable protective materials while effectively blocking even sub-nanometer (>0.66 nm) model ions/molecules.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gases
  • Graphite*
  • Ions
  • Membranes
  • Nanopores*
  • Steam

Substances

  • Graphite
  • Steam
  • Gases
  • Ions