New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance

Ann N Y Acad Sci. 2023 Jan;1519(1):46-62. doi: 10.1111/nyas.14921. Epub 2022 Nov 7.

Abstract

Antibiotics effective against Gram-negative ESKAPE pathogens are a critical area of unmet need. Infections caused by these pathogens are not only difficult to treat but finding new therapies to overcome Gram-negative resistance is also a challenge. There are not enough antibiotics in development that target the most dangerous pathogens and there are not enough novel drugs in the pipeline. The major obstacle in the antibiotic discovery pipeline is the lack of understanding of how to breach antibiotic permeability barriers of Gram-negative pathogens. These barriers are created by active efflux pumps acting across both the inner and the outer membranes. Overproduction of efflux pumps alone or together with either modification of the outer membrane or antibiotic-inactivating enzymes and target mutations contribute to clinical levels of antibiotics resistance. Recent efforts have generated significant advances in the rationalization of compound efflux and permeation across the cell envelopes of Gram-negative pathogens. Combined with earlier studies and novel mathematical models, these efforts have led to a multilevel understanding of how antibiotics permeate these barriers and how multidrug efflux and permeation contribute to the development of antibiotic resistance and heteroresistance. Here, we discuss the new developments in this area.

Keywords: Gram-negative bacteria; drug permeation; mathematical models; multidrug efflux.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Biological Transport
  • Cell Wall*
  • Drug Resistance, Microbial
  • Gram-Negative Bacteria*
  • Humans

Substances

  • Anti-Bacterial Agents