Nonadiabatic Couplings Can Speed Up Quantum Tunneling Transition Path Times

J Phys Chem Lett. 2022 Nov 17;13(45):10558-10566. doi: 10.1021/acs.jpclett.2c03008. Epub 2022 Nov 7.

Abstract

Quantum tunneling is known to play an important role in the dynamics of systems with nonadiabatic couplings. However, until recently, the time-domain properties of nonadiabatic scattering have been severely under-explored. Using numerically exact quantum methods, we study the impact that nonadiabatic couplings have on the time it takes to tunnel through a barrier. We find that the Wigner phase time is the appropriate measure to use when determining the tunneling flight time also when considering nonadiabatic systems. The central result of the present study is that in an avoided crossing system in one dimension, the nonadiabatic couplings speed up the tunneling event, relative to the adiabatic case in which all nonadiabatic coupling is ignored. This has implications for both the study of quantum tunneling times and for the field of nonadiabatic scattering and chemistry.