A new method based on additive vegetation index for mapping Huangtai algae coverage in Lake Ulansuhai

Environ Sci Pollut Res Int. 2023 Feb;30(9):24590-24605. doi: 10.1007/s11356-022-23781-4. Epub 2022 Nov 7.

Abstract

Huangtai algal blooms are key indicators of eutrophication and lake-ecosystem damage. Understanding the spatiotemporal heterogeneity of their growth is critical for preserving the ecological environment. The dimidiate pixel model is commonly used to estimate vegetation coverage; however, indices such as the normalized difference vegetation index have not been specifically constructed for the Huangtai algae spectrum and thus are not specific or sufficiently precise for use as indicators. Therefore, we propose a new dimidiate pixel model based on a novel additive vegetation index to calculate the Huangtai algal coverage for each pixel using Landsat multispectral satellite images with 30-m resolution. The results showed that the additive vegetation index with R2 = 0.994 is a better indicator than the normalized difference vegetation index, enhanced vegetative index, and ratio vegetative index, with the accuracy of the new model reaching 86.61%. Monthly Landsat images from 2006 to 2016 were used to calculate the Huangtai algal coverage. Analysis of the inter-monthly variation indicated increased coverage from May to July, with an annual maximum and minimum of 14.43% and 0.33% in 2008 and 2013, respectively. This study provides a new reference map of Huangtai algal cover, which is important for monitoring and protecting the Lake Ulansuhai environment.

Keywords: Inverse problems; Lakes; Protection; Remote sensing.

MeSH terms

  • China
  • Ecosystem*
  • Environmental Monitoring / methods
  • Lakes*
  • Plants