Rational Design of a Facially Coordinating P,N,N Ligand for Manganese-Catalysed Enantioselective Hydrogenation of Cyclic Ketones

Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202212479. doi: 10.1002/anie.202212479. Epub 2022 Dec 8.

Abstract

DFT calculations on the full catalytic cycle for manganese catalysed enantioselective hydrogenation of a selection of ketones have been carried out at the PBE0-D3PCM //RI-BP86PCM level. Mn complexes of an enantiomerically pure chiral P,N,N ligand have been found to be most reactive when adopting a facial coordination mode. The use of a new ligand with an ortho-substituted dimethylamino-pyridine motif has been calculated to completely transform the levels of enantioselectivity possible for the hydrogenation of cyclic ketones relative to the first-generation Mn catalysts. In silico evaluation of substrates has been used to identify those likely to be reduced with high enantiomer ratios (er), and others that would exhibit less selectivity; good agreements were then found in experiments. Various cyclic ketones and some acetophenone derivatives were hydrogenated with er's up to 99 : 1.

Keywords: Asymmetric Reduction; Chirality; Computational Design; Earth Abundant Metals; Pincer Ligands.