Individualized prediction of chronic kidney disease for the elderly in longevity areas in China: Machine learning approaches

Front Public Health. 2022 Oct 21:10:998549. doi: 10.3389/fpubh.2022.998549. eCollection 2022.

Abstract

Background: Chronic kidney disease (CKD) has become a major public health problem worldwide and has caused a huge social and economic burden, especially in developing countries. No previous study has used machine learning (ML) methods combined with longitudinal data to predict the risk of CKD development in 2 years amongst the elderly in China.

Methods: This study was based on the panel data of 925 elderly individuals in the 2012 baseline survey and 2014 follow-up survey of the Healthy Aging and Biomarkers Cohort Study (HABCS) database. Six ML models, logistic regression (LR), lasso regression, random forests (RF), gradient-boosted decision tree (GBDT), support vector machine (SVM), and deep neural network (DNN), were developed to predict the probability of CKD amongst the elderly in 2 years (the year of 2014). The decision curve analysis (DCA) provided a range of threshold probability of the outcome and the net benefit of each ML model.

Results: Amongst the 925 elderly in the HABCS 2014 survey, 289 (18.8%) had CKD. Compared with the other models, LR, lasso regression, RF, GBDT, and DNN had no statistical significance of the area under the receiver operating curve (AUC) value (>0.7), and SVM exhibited the lowest predictive performance (AUC = 0.633, p-value = 0.057). DNN had the highest positive predictive value (PPV) (0.328), whereas LR had the lowest (0.287). DCA results indicated that within the threshold ranges of ~0-0.03 and 0.37-0.40, the net benefit of GBDT was the largest. Within the threshold ranges of ~0.03-0.10 and 0.26-0.30, the net benefit of RF was the largest. Age was the most important predictor variable in the RF and GBDT models. Blood urea nitrogen, serum albumin, uric acid, body mass index (BMI), marital status, activities of daily living (ADL)/instrumental activities of daily living (IADL) and gender were crucial in predicting CKD in the elderly.

Conclusion: The ML model could successfully capture the linear and nonlinear relationships of risk factors for CKD in the elderly. The decision support system based on the predictive model in this research can help medical staff detect and intervene in the health of the elderly early.

Keywords: China; chronic kidney disease; elderly; longevity areas; machine learning; prediction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activities of Daily Living*
  • Aged
  • China / epidemiology
  • Cohort Studies
  • Humans
  • Machine Learning
  • Renal Insufficiency, Chronic* / epidemiology