Gold Nanoparticle-Labeled CRISPR-Cas13a Assay for the Sensitive Solid-State Nanopore Molecular Counting

Adv Mater Technol. 2022 Mar;7(3):2101550. doi: 10.1002/admt.202101550. Epub 2022 Jan 22.

Abstract

A gold nanoparticle (AuNP) labeled CRISPR-Cas13a nucleic acid assay has been developed for sensitive solid-state nanopore sensing. Instead of directly detecting the translocation of RNA through a nanopore, our system utilizes non-covalent conjugates of AuNPs and RNA targets. Upon CRISPR activation, the AuNPs are liberated from the RNA, isolated, and passed through a nanopore sensor. Detection of the AuNPs can be observed as increasing ionic current in the chip. Each AuNP that is detected is enumerated as an event, leading to quantitative of molecular targets. Leveraging the high signal-to-noise ratio enabled by the AuNPs, a detection limit of 50 fM before front-end target amplification is achieved using SARS-CoV-2 RNA segments as a Cas13 target. Furthermore, a dynamic range of six orders of magnitude is demonstrated for quantitative RNA sensing. This simplified AuNP-based CRISPR assay is performed at the physiological temperature without relying on thermal cyclers. In addition, the nanopore reader is similar in size to a smartphone, making the assay system suitable for rapid and portable nucleic acid biomarker detection in either low-resource settings or hospitals.

Keywords: CRISPR-Cas13a; biosensing; diagnostics; nanopore; point-of-care.