Producing Tunable Broadband Near-Infrared Emission through Co-Substitution in (Ga1- xMgx)(Ga1- xGex)O3:Cr3

ACS Appl Mater Interfaces. 2022 Nov 16;14(45):51157-51164. doi: 10.1021/acsami.2c17902. Epub 2022 Nov 6.

Abstract

Broadband near-infrared (NIR) phosphors are in high demand for creating "smart" NIR phosphor-converted light-emitting diode (pc-LED) sources. In this work, a series of Cr3+-substituted NIR-emitting materials with highly efficient, broad, tunable emission spectra are achieved by modifying the simple oxide Ga2O3 using [Mg2+-Ge4+] and [Ga3+-Ga3+] co-unit substitution. The results show that the emission peak can be shifted from 726 to 830 nm while maintaining a constant excitation peak in the blue light region, enabling extensive application. The optical properties stem from changes in the Cr3+ crystal field environment upon substitution. Intriguingly, the temperature-dependent photoluminescence emission peak position shows virtually no change in the [Mg2+-Ge4+] co-substituted materials. This abnormal phenomenon is found to be a comprehensive embodiment of a weakening crystal field environment (red-shift) as the temperature increases and reduced local structure distortion (blue-shift) with increasing temperature. The high quantum yield, NIR emission, and net-zero emission shift as a function of temperature make this phosphor class optimal for device incorporation. As a result, their performance was studied by coating the phosphor on a 450 nm emitting LED chip. The fabricated device demonstrates an excellent NIR output power and NIR photoelectric conversion efficiency. This study provides a series of efficient, tunable, broadband NIR materials for spectroscopy applications and contributes to the basic foundation of Cr3+-activated NIR phosphors.

Keywords: co-substitution; crystal field splitting; near-infrared; photoluminescence; simple oxide.