Predicting Formulation Conditions During Ultrafiltration and Dilution to Drug Substance Using a Donnan Model with Homology-Model Based Protein Charge

J Pharm Sci. 2023 Mar;112(3):820-829. doi: 10.1016/j.xphs.2022.10.028. Epub 2022 Nov 4.

Abstract

In the manufacturing of therapeutic monoclonal antibodies (mAbs), the final steps of the purification process are typically ultrafiltration/diafiltration (UF/DF), dilution, and conditioning. These steps are developed such that the final drug substance (DS) is formulated to the desired mAb, buffer, and excipient concentrations. To develop these processes, process and formulation development scientists often perform experiments to account for the Gibbs-Donnan and volume-exclusion effects during UF/DF, which affect the output pH and buffer concentration of the UF/DF process. This work describes the development of an in silico model for predicting the DS pH and buffer concentration after accounting for the Gibbs-Donnan and volume-exclusion effects during the UF/DF operation and the subsequent dilution and conditioning steps. The model was validated using statistical analysis to compare model predictions against experimental results for nine molecules of varying protein concentrations and formulations. In addition, our results showed that the structure-based in silico approach used to calculate the protein charge was more accurate than a sequence-based approach. Finally, we used the model to gain fundamental insights about the Gibbs-Donnan effect by highlighting the role of the protein charge concentration (the protein concentration multiplied with protein charge at the formulation pH) on the Gibbs-Donnan effect. Overall, this work demonstrates that the Gibbs-Donnan and volume-exclusions effects can be predicted using an in silico model, potentially alleviating the need for experiments.

Keywords: Biotechnology; In silico modeling; Mechanistic modeling; Processing; Protein charge; Protein formulation(s); Unit operations; pH.

MeSH terms

  • Antibodies, Monoclonal* / chemistry
  • Excipients / chemistry
  • Ultrafiltration* / methods

Substances

  • Antibodies, Monoclonal
  • Excipients