Endophytic Bosea spartocytisi sp. nov. Coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands)

Syst Appl Microbiol. 2022 Nov;45(6):126374. doi: 10.1016/j.syapm.2022.126374. Epub 2022 Oct 21.

Abstract

Two rod-shaped Gram negative strains, SSUT16T and SSUT22, were isolated from root nodules of Spartocytisus supranubius in soils of the Teide National Park (Tenerife, Spain). The 16S rRNA gene sequences of these two novel strains classified them within genus Bosea with similarity values ranging from 97.65 % to 99.54 % with respect to the other species of this genus. The MLSA analysis from a concatenation of the two housekeeping- genes, recA and gyrB, showed that Bosea thiooxidans LMG 26210T and B. robiniae LMG 26381T are the two closest relative species with which they share similarity sequences values of 94.42 % and 94.27 %, respectively. The genome sequence analysis of strain SSUT16T showed average nucleotide identity percentages (ANIb) and digital DNA-DNA hybridization (dDDH) below 84 % and 33 %, respectively, with the type strains of all sequenced species of genus Bosea. These values are much lower than the currently accepted cut-off values for these two parameters to delineate bacterial species, confirming that the novel strains constitute a novel Bosea species. In addition, they are also distinguished from the other closest species in their fatty acid composition and in other phenotypic characteristics. Genome sequence analysis showed the absence of the common nodulation and nitrogen fixation genes in the novel strains. Therefore, based on the results of phylogenetic, genomic, chemotaxonomic and phenotypic characterization, we propose a new species named Bosea spartocytisi sp. nov., with type strain SSUT16T (=LMG 32510T = CECT 30526T = HAMBI 3759T).

Keywords: Bosea; Legume root-nodule endophyte; Spartocytisus supranubius.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • Cytisus*
  • DNA, Bacterial / genetics
  • Fabaceae* / microbiology
  • Fatty Acids / analysis
  • Genes, Bacterial
  • Nucleic Acid Hybridization
  • Parks, Recreational
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Rhizobium* / genetics
  • Root Nodules, Plant / microbiology
  • Sequence Analysis, DNA
  • Soil
  • Spain

Substances

  • RNA, Ribosomal, 16S
  • Soil
  • DNA, Bacterial
  • Fatty Acids