Various hydrogen bonds make different fates of pharmaceutical contaminants on oxygen-rich nanomaterials

Environ Pollut. 2023 Jan 1;316(Pt 1):120572. doi: 10.1016/j.envpol.2022.120572. Epub 2022 Nov 3.

Abstract

Various hydrogen bonds, especially charge-assisted hydrogen bond (CAHB), is considered as one of vital mechanisms affecting the environmental behavior and risk of pharmaceutical contaminants (PCs). Herein the sorption/desorption of three PCs including clofibric acid (CA), acetaminophen (ACT), and sulfamerazine (SMZ) on three Oxygen-rich (O-rich) nanoparticles (nano-silica: Nano-SiO2, nano-alumina: Nano-Al2O3, and oxidized carbon nanotubes: O-CNTs) were investigated to explore the effect of various hydrogen bonds with different strengths on environmental behaviors of PCs. The results indicated that although solvent-assisted CAHB, solvent-uninvolved CAHB, and ordinary hydrogen bond (OHB) all played a crucial role in sorption of PCs on three O-rich nanomaterials, they showed significantly different effects on the desorption behaviors of PCs from three sorbents. Compared with OHB (hysteresis index ≤0.0766), the stronger CAHB (hysteresis index ≥0.1981) between PCs and O-rich nanoparticles having comparable pKa with PCs, caused obvious desorption hysteresis of PCs, resulting in their better immobilization on O-rich nanomaterials. The FTIR characterization found that both solvent-assisted and solvent-uninvolved CAHB formation resulted in a new characteristic peak appeared in the high frequency (3660 cm-1 for Nano-SiO2, 3730 cm-1 for Nano-Al2O3, and 3780 cm-1 for O-CNTs). Also, density functional theory (DFT) calculation verified that the smaller |ΔpKa| between PCs and O-rich sorbents, the shorter bond length, and the larger bond angle resulted in the stronger hydrogen bond formed, thereby leading to the greater immobilization of PCs. These results provide in-depth understanding of the environmental behavior and risk of PCs, and light new idea for designed materials to control PCs pollution in the environment.

Keywords: DFT; FTIR; Hydrogen bonding; Mineral oxides; Pharmaceuticals.

MeSH terms

  • Adsorption
  • Hydrogen Bonding
  • Nanotubes, Carbon* / chemistry
  • Oxygen
  • Pharmaceutical Preparations
  • Silicon Dioxide
  • Solvents

Substances

  • Nanotubes, Carbon
  • Oxygen
  • Silicon Dioxide
  • Solvents
  • Pharmaceutical Preparations