Phototroph-heterotroph interactions during growth and long-term starvation across Prochlorococcus and Alteromonas diversity

ISME J. 2023 Feb;17(2):227-237. doi: 10.1038/s41396-022-01330-8. Epub 2022 Nov 5.

Abstract

Due to their potential impact on ecosystems and biogeochemistry, microbial interactions, such as those between phytoplankton and bacteria, have been studied intensively using specific model organisms. Yet, to what extent interactions differ between closely related organisms, or how these interactions change over time, or culture conditions, remains unclear. Here, we characterize the interactions between five strains each of two globally abundant marine microorganisms, Prochlorococcus (phototroph) and Alteromonas (heterotroph), from the first encounter between individual strains and over more than a year of repeated cycles of exponential growth and long-term nitrogen starvation. Prochlorococcus-Alteromonas interactions had little effect on traditional growth parameters such as Prochlorococcus growth rate, maximal fluorescence, or lag phase, affecting primarily the dynamics of culture decline, which we interpret as representing cell mortality and lysis. The shape of the Prochlorococcus decline curve and the carrying capacity of the co-cultures were determined by the phototroph and not the heterotroph strains involved. Comparing various mathematical models of culture mortality suggests that Prochlorococcus death rate increases over time in mono-cultures but decreases in co-cultures, with cells potentially becoming more resistant to stress. Our results demonstrate intra-species differences in ecologically relevant co-culture outcomes. These include the recycling efficiency of N and whether the interactions are mutually synergistic or competitive. They also highlight the information-rich growth and death curves as a useful readout of the interaction phenotype.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alteromonas* / genetics
  • Bacteria
  • Ecosystem
  • Microbial Interactions
  • Prochlorococcus* / metabolism