Telomeres, Telomerase and Cancer

Arch Med Res. 2022 Dec;53(8):741-746. doi: 10.1016/j.arcmed.2022.10.004. Epub 2022 Nov 3.

Abstract

Telomeres and telomerase play a crucial role in human aging and cancer. Three "drivers" of human aging can be identified. The developmental program encoded in DNA is the primary determinant of lifespan. Faithful execution of the developmental program requires stability of the (epi-)genome which is challenged throughout life by damage to DNA as well as epigenetic 'scars' from error-free DNA repair and stochastic errors made during the establishment and maintenance of the "epigenome". Over time (epi-)mutations accumulate, compromising cellular function and causing (pre-)malignant alterations. Damage to the genome and epigenome can be considered the second "driver" of aging. A third driver of the aging process, important to suppress tumors in long-lived animals, is caused by progressive loss of telomeric DNA. Telomere erosion protects against cancer early in life but limits cell renewal late in life, in agreement with the Antagonistic Pleiotropy theory on the evolutionary origin of aging. Malignant tumors arise when mutations and/or epimutations in cells (clock 2) corrupt the developmental program (clock 1) as well as tumor suppression by telomere erosion (clock 3). In cancer cells clock 3 is typically inactivated by loss of p53 as well as increased expression of telomerase. Taken together, aging in humans can be described by the ticking of three clocks: the clock that directs development, the accumulation of (epi-)mutations over time and the telomere clock that limits the number of cell divisions in normal stem and immune cells.

Keywords: Aging; Cancer; Epimutations; Stem cell turnover; Telomerase; Telomere erosion; Telomere length.

Publication types

  • Review

MeSH terms

  • Aging / genetics
  • Animals
  • Humans
  • Neoplasms* / genetics
  • Telomerase* / genetics
  • Telomerase* / metabolism
  • Telomere / genetics
  • Telomere / metabolism

Substances

  • Telomerase