An investigation on 3-hydroxybenzaldehyde for exploring terahertz low-frequency vibration modes with quasi-harmonic approximation method

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Feb 15;287(Pt 1):122046. doi: 10.1016/j.saa.2022.122046. Epub 2022 Oct 28.

Abstract

3-Hydroxybenzaldehyde (3-HBA) was investigated in the range of 0.6-2.8 THz by terahertz time-domain spectroscopy (THz-TDS) and solid-state density functional theory (ss-DFT) with first-principles calculation. Four distinct peaks were found respectively, and among them, the intensity disparity between experiment and simulation spectra at 2.04 THz was recognized as the biggest inconsistency. Considering thermal behavior can be responsible for this, quasi-harmonic approximation (QHA) method was introduced to mimic the unit cell volume expansion. According to vibrational modes analysis, it was ascertained that the biggest vibrational modes discrepancy was also located at 2.04 THz. Molecules in 0% and 4% unit cell expansion exhibit an opposite rotational direction in a-b plane compared with 2% unit cell expansion. Noncovalent intermolecular interactions were investigated with independent gradient model (IGM), and the result indicates that hydrogen bonding is the dominating noncovalent interaction of 3-HBA. While calculating systematic potential energy to the displaced bonds stretching involving hydrogen atoms, it was found the anomalous potential energy variation to the bond stretching provides a possible explanation for the rotation direction divergence, that is, the rotation direction divergence can be related to some hydrogen atoms seeking lower overall potential energy around their equilibrium positions during bond stretching in response to the variational intermolecular van der Waals force. This research combined THz-TDS with the quasi-harmonic approximation method, elucidating the principle of vibrational characteristics in different volumes, which is beneficial to the investigation of the terahertz low-frequency vibration to thermal behavior as a reference in biochemistry and other fields.

Keywords: 3-Hydroxybenzaldehyde; Quasi-harmonic approximation; Solid-state density functional theory; Terahertz spectroscopy.