Driven Radical Motion Enhances Cryptochrome Magnetoreception: Toward Live Quantum Sensing

J Phys Chem Lett. 2022 Nov 17;13(45):10500-10506. doi: 10.1021/acs.jpclett.2c02840. Epub 2022 Nov 4.

Abstract

The mechanism underlying magnetoreception has long eluded explanation. A popular hypothesis attributes this sense to the quantum coherent spin dynamics and spin-selective recombination reactions of radical pairs in the protein cryptochrome. However, concerns about the validity of the hypothesis have been raised because unavoidable inter-radical interactions, such as the strong electron-electron dipolar coupling, appear to suppress its sensitivity. We demonstrate that sensitivity can be restored by driving the spin system through a modulation of the inter-radical distance. It is shown that this dynamical process markedly enhances geomagnetic field sensitivity in strongly coupled radical pairs via Landau-Zener-Stückelberg-Majorana transitions between singlet and triplet states. These findings suggest that a "live" harmonically driven magnetoreceptor can be more sensitive than its "dead" static counterpart.

MeSH terms

  • Cryptochromes* / metabolism
  • Electrons
  • Magnetic Fields*
  • Motion

Substances

  • Cryptochromes