New insights into mechanisms of endothelial insulin resistance in type 2 diabetes

Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1231-H1238. doi: 10.1152/ajpheart.00537.2022. Epub 2022 Nov 4.

Abstract

Insulin resistance in the vasculature is a hallmark of type 2 diabetes (T2D), and blunting of insulin-induced vasodilation is its primary consequence. Individuals with T2D exhibit a marked impairment in insulin-induced dilation in resistance arteries across vascular beds. Importantly, reduced insulin-stimulated vasodilation and blood flow to skeletal muscle limits glucose uptake and contributes to impaired glucose control in T2D. The study of mechanisms responsible for the suppressed vasodilatory effects of insulin has been a growing topic of interest for not only its association with glucose control and extension to T2D but also its relationship with cardiovascular disease development and progression. In this mini-review, we integrate findings from recent studies by our group with the existing literature focused on the mechanisms underlying endothelial insulin resistance in T2D.

Keywords: diabetes; glucose control; insulin resistance; obesity; vascular dysfunction.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Blood Glucose
  • Diabetes Mellitus, Type 2*
  • Humans
  • Insulin / pharmacology
  • Insulin Resistance* / physiology
  • Muscle, Skeletal
  • Vasodilation

Substances

  • Blood Glucose
  • Insulin