Significance of native PLGA nanoparticles in the treatment of Alzheimer's disease pathology

Bioact Mater. 2022 Jul 15:17:506-525. doi: 10.1016/j.bioactmat.2022.05.030. eCollection 2022 Nov.

Abstract

Alzheimer's disease (AD) is believed to be triggered by increased levels/aggregation of β-amyloid (Aβ) peptides. At present, there is no effective disease-modifying treatment for AD. Here, we evaluated the therapeutic potential of FDA-approved native poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles on Aβ aggregation and in cellular/animal models of AD. Our results showed that native PLGA can not only suppress the spontaneous aggregation but can also trigger disassembly of preformed Aβ aggregates. Spectroscopic studies, molecular dynamics simulations and biochemical analyses revealed that PLGA, by interacting with the hydrophobic domain of Aβ1-42, prevents a conformational shift towards the β-sheet structure, thus precluding the formation and/or triggering disassembly of Aβ aggregates. PLGA-treated Aβ samples can enhance neuronal viability by reducing phosphorylation of tau protein and its associated signaling mechanisms. Administration of PLGA can interact with Aβ aggregates and attenuate memory deficits as well as Aβ levels/deposits in the 5xFAD mouse model of AD. PLGA can also protect iPSC-derived neurons from AD patients against Aβ toxicity by decreasing tau phosphorylation. These findings provide unambiguous evidence that native PLGA, by targeting different facets of the Aβ axis, can have beneficial effects in mouse neurons/animal models as well as on iPSC-derived AD neurons - thus signifying its unique therapeutic potential in the treatment of AD pathology.

Keywords: Alzheimer's disease; Nanoparticles; Neuroprotection; Peptide aggregation; β-amyloid.