Assessment of sources variability of riverine particulate organic matter with land use and rainfall changes using a three-indicator (δ13C, δ15N, and C/N) Bayesian mixing model

Environ Res. 2023 Jan 1;216(Pt 3):114653. doi: 10.1016/j.envres.2022.114653. Epub 2022 Oct 31.

Abstract

In intensive agricultural watersheds, riverine particulate organic matter (POM) may be transported from many sources such as rice paddies, crop uplands, forests, and livestock farming areas during rainy seasons. However, the impacts of land-use and rainfall changes on the POM sources are not well understood. In this study, changes in the sources of riverine POM were investigated in an agricultural area of Korea between 2014 and 2020/21. During this period, land-use and rainfall patterns changed dramatically. The δ13C, δ15N, and C/N of the POM sources as well as those of riverine POM were analyzed, and a stable isotope analysis in R (SIAR) model was utilized for source apportionment. There were differences in δ13C, δ15N, and C/N among the sources. For example, manure had higher δ13C (-22.6 ± 3.3‰) and δ15N (+10.6 ± 5.9‰) than soils (from -28.0 ± 0.8‰ to -25.1 ± 1.2‰ for δ13C and +3.6 ± 1.7‰ to +9.8 ± 1.4‰ for δ15N). For soils, the δ13C and δ15N were higher for upland soils, while C/N was greater for forest soils than for others. For riverine POM, the δ15N marginally changed; however, the δ13C and C/N increased from -26.1 ± 0.9‰ to -20.8 ± 5.3‰ and from +7.7 ± 1.7 to +18.8 ± 8.3 between 2014 and 2020/21, respectively. The SIAR model showed that the contributions of paddy (from 41.0% to 14.9%) and upland fields (from 48.1% to 23.7%) to riverine POM decreased between the periods due to decreased paddy area and the implementation of best management practice on upland fields, respectively. However, the contribution of forests (from 3.5% to 28.0%) and manure (from 7.4% to 33.5%) increased probably due to improper management of forest clear-cutting sites and livestock manure storage sites. The contributions of agricultural soils to riverine POM decreased in drier years. Our study suggests that land management rather than land-use area is critical in riverine POM management, particularly in wetter years.

Keywords: Land management; POM tracer; SIAR; Source apportionment; Stable isotope.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bayes Theorem
  • Environmental Monitoring*
  • Manure
  • Nitrogen Isotopes / analysis
  • Particulate Matter*
  • Soil

Substances

  • Particulate Matter
  • Nitrogen Isotopes
  • Manure
  • Soil