High-throughput genetic screening of meiotic commitment using fluorescence microscopy in Saccharomyces cerevisiae

STAR Protoc. 2022 Oct 27;3(4):101797. doi: 10.1016/j.xpro.2022.101797. eCollection 2022 Dec 16.

Abstract

Simple genetic screens in budding yeast have identified many conserved meiotic regulators. However, the identification of genes involved in specific steps of meiosis may require a more complex genetic screen that allows visualization of meiosis. Here, we describe a high-throughput protocol using fluorescence microscopy to systematically screen an overexpression library to identify genes involved in meiotic commitment. We also explain how this protocol can be adapted for identifying proteins that function at different stages of meiosis. For complete details on the use and execution of this protocol, please refer to Gavade et al. (2022).

Keywords: Cell Biology; Genetics; High Throughput Screening; Microscopy; Model Organisms.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Genetic Testing
  • Meiosis / genetics
  • Microscopy, Fluorescence
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae* / genetics

Substances

  • Saccharomyces cerevisiae Proteins