Engineering of Defect-Rich Cu2WS4 Nano-homojunctions Anchored on Covalent Organic Frameworks for Enhanced Gaseous Elemental Mercury Removal

Environ Sci Technol. 2022 Nov 15;56(22):16240-16248. doi: 10.1021/acs.est.2c04799. Epub 2022 Nov 2.

Abstract

Fabricating two-dimensional transition-metal dichalcogenide (TMD)-based unique composites is an effective way to boost the overall physical and chemical properties, which will be helpful for the efficient and fast capture of elemental mercury (Hg0) over a wide temperature range. Herein, we constructed a defect-rich Cu2WS4 nano-homojunction decorated on covalent organic frameworks (COFs) with abundant S vacancies. Highly well-dispersed and uniform Cu2WS4 nanoparticles were immobilized on COFs strongly via an ion pre-anchored strategy, consequently exhibiting enhanced Hg0 removal performance. The saturation adsorption capacity of Cu2WS4@COF composites (21.60 mg·g-1) was 9 times larger than that of Cu2WS4 crystals, which may be ascribed to more active S sites exposed in hybrid interfaces formed in the Cu2WS4 nano-homojunction and between Cu2WS4 nanoparticles and COFs. More importantly, such hybrid materials reduced adsorption deactivation at high temperatures, having a wide operating temperature range (from 40 to 200 °C) owing to the thermostability of active S species immobilized by both physical confined and chemical interactions in COFs. Accordingly, this work not only provides an effective method to construct uniform TMD-based sorbents for mercury capture but also opens a new realm of advanced COF hybrid materials with designed functionalities.

Keywords: adsorption; covalent organic frameworks; elemental mercury; nano-homojunction; transition-metal dichalcogenides.