Benchmark of GW Methods for Core-Level Binding Energies

J Chem Theory Comput. 2022 Dec 13;18(12):7570-7585. doi: 10.1021/acs.jctc.2c00617. Epub 2022 Nov 2.

Abstract

The GW approximation has recently gained increasing attention as a viable method for the computation of deep core-level binding energies as measured by X-ray photoelectron spectroscopy. We present a comprehensive benchmark study of different GW methodologies (starting point optimized, partial and full eigenvalue-self-consistent, Hedin shift, and renormalized singles) for molecular inner-shell excitations. We demonstrate that all methods yield a unique solution and apply them to the CORE65 benchmark set and ethyl trifluoroacetate. Three GW schemes clearly outperform the other methods for absolute core-level energies with a mean absolute error of 0.3 eV with respect to experiment. These are partial eigenvalue self-consistency, in which the eigenvalues are only updated in the Green's function, single-shot GW calculations based on an optimized hybrid functional starting point, and a Hedin shift in the Green's function. While all methods reproduce the experimental relative binding energies well, the eigenvalue self-consistent schemes and the Hedin shift yield with mean absolute errors <0.2 eV the best results.

MeSH terms

  • Benchmarking*
  • Photoelectron Spectroscopy
  • Trifluoroacetic Acid

Substances

  • Trifluoroacetic Acid