Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf0.5Zr0.5O2 Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory

ACS Appl Mater Interfaces. 2022 Nov 16;14(45):51137-51148. doi: 10.1021/acsami.2c15369. Epub 2022 Nov 1.

Abstract

The comparatively high coercive field in Hf0.5Zr0.5O2 (HZO) and other HfO2-based ferroelectric thin films leads to two critical challenges for their application in embedded ferroelectric memory: high operating voltage due to a large thickness-field product and poor endurance due to the high operating field close to the breakdown field. In this study, we demonstrate that the thickness scaling of ferroelectric HZO down to 4 nm is a promising approach to overcome these challenges. As the coercive voltage scales down almost linearly with the film thickness, the operating voltage of 4 nm HZO is reduced to 0.6 V for one-shot operation and 1.2 V for stable memory operation, which is in the voltage range compatible with scaled silicon technologies. Furthermore, it is found that the breakdown field is substantially improved in thinner HZO since the breakdown mechanism is dominated by the stress voltage, not the stress field, resulting in improved cycle-to-breakdown by more than 4 orders of magnitude when thinning from 9.5 to 4 nm. We identify two concerns accompanying thickness scaling: the increase in crystallization temperature and the pinched hysteresis behavior, which can be addressed by carefully preparing temperature-thickness mapping and applying strong-field wake-up cycling, respectively. Our optimal 4 nm-thick HZO ferroelectric capacitor exhibits an operating voltage of 1.2 V with over 10 year data retention and 1012 endurance cycles at 100 kHz, which can be further improved to more than 1014 with a smaller capacitor size and higher operating frequency.

Keywords: breakdown; crystallization temperature; endurance; fatigue; ferroelectric Hf0.5Zr0.5O2 (HZO); low voltage operation; thickness scaling; wake-up effect.