Nonlinear optical limiting property of the carboxyl-functionalized Ti3C2 MXene nanosheets

J Chem Phys. 2022 Oct 28;157(16):164704. doi: 10.1063/5.0117435.

Abstract

Nonlinear optical limiting (OL) properties of carboxyl-functionalized Ti3C2 nanosheets (COOH-MXene) were studied using the nanosecond laser Z-scan technology. COOH-MXene showed excellent broadband OL properties with OL thresholds of 0.34 J/cm2 at 532 nm and 0.58 J/cm2 at 1064 nm, and the OL mechanism was mainly attributed to the reverse saturable absorption effect. Femtosecond time-resolved transient absorption measurements were used to clarify the ultrafast carrier dynamics in the OL process, and the results revealed that excited states absorption (ESA) in MXene was enhanced by introducing more carboxyl group terminations. When COOH-MXene was irradiated by laser pulses, excited electrons in the conduction band of MXene could transfer to the carboxyl groups and induce the ESA in the surface functional groups, resulting in the excellent OL property of COOH-MXene.