A 3D printed sandwich-type piezoelectric motor with a surface texture

Rev Sci Instrum. 2022 Oct 1;93(10):105003. doi: 10.1063/5.0107009.

Abstract

Polymer-based piezoelectric motors have excellent properties, such as lightweight and corrosion resistance. In addition, 3D printing and customized additive manufacturing of polymers provide new opportunities for the development of piezoelectric motors with complex or special structures. In this paper, a 3D printed polymer-based sandwich-type piezoelectric motor operating in a single longitudinal mode is developed. A vibration decomposition model of the motor and an analytical model considering polymer viscoelasticity are established to analyze the dynamic characteristics and to determine the geometric structure of the motor. To increase the coefficient of friction, a polymer surface texture is utilized on the contacts. The experimental results show that the friction coefficient of the contact tip with surface texture is about 0.16, which increased by 45.5% compared to a smooth surface. The resonance frequency is 28.648 kHz, and the maximum no-load speed under 300 Vp-p is 54 r/min. Our study shows the promise of polymer-based materials in the development of the piezoelectric motor.