VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera

Plant Cell Rep. 2023 Jan;42(1):181-196. doi: 10.1007/s00299-022-02943-1. Epub 2022 Nov 1.

Abstract

VyUSPA3 from the Chinese wild grape Vitis yeshanensis interacts with ERF105, PUB24 and NF-YB3, and overexpression of the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' confers drought tolerance. Drought is a major abiotic stress factor that seriously affects the growth and yield of grapevine. Although many drought-related genes have been identified in Arabidopsis and other plants, the functions of only a few of their counterparts have been revealed in grape. Here, a universal stress protein (USP) A from the Chinese wild grape Vitis yeshanensis, VyUSPA3, was identified and its function was subsequently characterized by overexpressing or silencing the VyUSPA3 gene in V. vinifera cv. 'Thompson Seedless' via Agrobacterium-mediated genetic transformation. After 21 d of the drought treatment, most leaves of the untransformed (UT) 'Thompson Seedless' lines wilted, yet UT lines were less damaged compared to the RNAi-VyUSPA3 lines, nonetheless, the OE-VyUSPA3 lines were mostly unaffected. Meanwhile, OE-VyUSPA3 lines showed smaller stomatal aperture, more developed roots, higher leaf relative water content, proline content, and antioxidant enzyme activities, as well as lower malondialdehyde, H2O2 and O2•- accumulation than UT lines, but this response pattern was reversed in the RNAi-VyUSPA3 lines. Besides, the transcript levels of four drought-related genes (RD22, RD29B, DREB2A, and NCED1) in OE-VyUSPA3 lines were greater than those in the RNAi-VyUSPA3 and UT lines. In addition, a yeast two-hybrid assay and a bimolecular fluorescence complementation assay confirmed that VyUSPA3 interacted with ERF105, PUB24, and NF-YB3, respectively. This study revealed that VyUSPA3 improved drought tolerance in transgenic grapevines possibly through interaction with the hormone signaling, ubiquitination system, ethylene-responsive element binding factor and nuclear factors.

Keywords: Drought tolerance; Genetically modified grapes; Interacting protein; Vitis yeshanensis; VyUSPA3.

MeSH terms

  • Drought Resistance* / genetics
  • Droughts
  • Gene Expression Regulation, Plant
  • Hydrogen Peroxide / metabolism
  • Plant Proteins* / genetics
  • Plant Proteins* / metabolism
  • Plants, Genetically Modified / genetics
  • Stress, Physiological / genetics
  • Vitis* / metabolism

Substances

  • Hydrogen Peroxide
  • Plant Proteins