Hyperspectral imaging detects perfusion and oxygenation differences between stapled and hand-sewn intestinal anastomoses

Innov Surg Sci. 2022 Jun 30;7(2):59-63. doi: 10.1515/iss-2022-0007. eCollection 2022 Jun.

Abstract

Objectives: Hand-sewn and stapled intestinal anastomoses are both daily performed routine procedures by surgeons. Yet, differences in micro perfusion of these two surgical techniques and their impact on surgical outcomes are still insufficiently understood. Only recently, hyperspectral imaging (HSI) has been established as a non-invasive, contact-free, real-time assessment tool for tissue oxygenation and micro-perfusion. Hence, objective of this study was HSI assessment of different intestinal anastomotic techniques and analysis of patients' clinical outcome.

Methods: Forty-six consecutive patients with an ileal-ileal anastomoses were included in our study; 21 side-to-side stapled and 25 end-to-end hand-sewn. Based on adsorption and reflectance of the analyzed tissue, chemical color imaging indicates oxygen saturation (StO2), tissue perfusion (near-infrared perfusion index [NIR]), organ hemoglobin index (OHI), and tissue water index (TWI).

Results: StO2 as well as NIR of the region of interest (ROI) was significantly higher in stapled anastomoses as compared to hand-sewn ileal-ileal anastomoses (StO2 0.79 (0.74-0.81) vs. 0.66 (0.62-0.70); p<0.001 NIR 0.83 (0.70-0.86) vs. 0.70 (0.63-0.76); p=0.01). In both groups, neither anastomotic leakage nor abdominal septic complications nor patient death did occur.

Conclusions: Intraoperative HSI assessment is able to detect significant differences in tissue oxygenation and NIR of hand-sewn and stapled intestinal anastomoses. Long-term clinical consequences resulting from the reduced tissue oxygenation and tissue perfusion in hand-sewn anastomoses need to be evaluated in larger clinical trials, as patients may benefit from further refined surgical techniques.

Keywords: anastomotic leakage; hand-sewn vs. stapled gastrointestinal anastomoses; hyperspectral imaging; tissue oxygenation and perfusion.