Decreased Water Mobility Contributes To Increased α-Synuclein Aggregation

Angew Chem Int Ed Engl. 2023 Feb 6;62(7):e202212063. doi: 10.1002/anie.202212063. Epub 2023 Jan 12.

Abstract

The solvation shell is essential for the folding and function of proteins, but how it contributes to protein misfolding and aggregation has still to be elucidated. We show that the mobility of solvation shell H2 O molecules influences the aggregation rate of the amyloid protein α-synuclein (αSyn), a protein associated with Parkinson's disease. When the mobility of H2 O within the solvation shell is reduced by the presence of NaCl, αSyn aggregation rate increases. Conversely, in the presence CsI the mobility of the solvation shell is increased and αSyn aggregation is reduced. Changing the solvent from H2 O to D2 O leads to increased aggregation rates, indicating a solvent driven effect. We show the increased aggregation rate is not directly due to a change in the structural conformations of αSyn, it is also influenced by a reduction in both the H2 O mobility and αSyn mobility. We propose that reduced mobility of αSyn contributes to increased aggregation by promoting intermolecular interactions.

Keywords: Amyloid; Hydration Shell; Hydrogen Bond; Solvation Shell; Solvent.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Humans
  • Parkinson Disease*
  • Solvents
  • Water
  • alpha-Synuclein* / chemistry

Substances

  • alpha-Synuclein
  • Water
  • Solvents