Metasurface Enabled Photothermoelectric Photoresponse of Semimetal Cd3As2 for Broadband Photodetection

Nano Lett. 2022 Nov 9;22(21):8728-8734. doi: 10.1021/acs.nanolett.2c03574. Epub 2022 Oct 31.

Abstract

The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic Cd3As2 nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient. This temperature gradient can contribute to thermoelectric photoresponse through the photothermoelectric effect. Furthermore, power-dependent measurements showed a linearly dependent photoresponse of the Cd3As2 metasurface device, indicating a second-order photocurrent response. Wavelength-dependent measurements showed that the metasurface can efficiently separate photoexcited carriers in the broadband range of 488 nm to 4 μm. The photoresponse near the metasurface boundaries exhibits a responsivity of ∼1 mA/W, which is higher than that near the electrode junctions. Moreover, the designed metasurface device provided an anisotropic polarization-dependent photoresponse rather than the isotropic photoresponse of the original Cd3As2 device. This study demonstrates that metasurfaces have excellent potential for artificial controllable photothermoelectric photoresponse of various semimetallic materials.

Keywords: Dirac semimetal; metasurface; photodetector; photothermoelectric effect.