Swept-source endoscopic optical coherence tomography real-time imaging system based on GPU acceleration for axial megahertz high-speed scanning

Eur Rev Med Pharmacol Sci. 2022 Oct;26(20):7349-7358. doi: 10.26355/eurrev_202210_30004.

Abstract

Objective: In order to solve the problem of image real-time processing and correction for high-speed endoscopic swept-source optical coherence tomography (SS-OCT), we highly optimize a computer-unified device architecture-based platform and use a field-programmable gate array to summarize the application experience.

Materials and methods: We use the Half-Sync/Half-Asyn mode to optimize memory in order to build a high-throughput data thread pool for CPU. We use asynchronous streaming architecture to multiplex multiple threads at high speed to accelerate data processing. At the same time, we design a rotary scanning position information encoding feedback module to suppress image drift, which can realize 25ns logic-timing sequence synchronization control through FPGA 40MHz clock.

Results: The maximum complete attainable axial-scan-processing rate (including memory transfer and display of B-scan frames) is 3.52 MHz for a 16-bit pixel depth and A-scans/s of 1024 pixels. To our knowledge, this is the fastest processing rate reported to date with a single-chip graphical processing unit for SS-OCT. Finally, the established high-speed SS-OCT is used to image mouse esophagus and human fingers, and the output images are stable. When the image size is 1024 × 1024 pixels, the real-time imaging rate is 200 frames per second.

Conclusions: This paper develops a real-time image processing and reconstruction technology suitable for high-throughput SS-OCT systems, which can have high-density operation and efficient parallelism, while suppressing high-speed image drift. It lays the foundation for the non-destructive, in vivo, non-staining, fast and convenient early tumor diagnosis of high-speed endoscopic SS-OCT.

MeSH terms

  • Acceleration
  • Animals
  • Humans
  • Image Processing, Computer-Assisted*
  • Mice
  • Software
  • Tomography, Optical Coherence* / methods