Effects of Lycium Barbarum Polysaccharides on the Metabolism of Dendritic Cells: An In Vitro Study

J Immunol Res. 2022 Oct 19:2022:5882136. doi: 10.1155/2022/5882136. eCollection 2022.

Abstract

Targeting dendritic cells (DCs) metabolism-related pathways and in-situ activation of DCs have become a new trend in DC-based immunotherapy. Studies have shown that Lycium barbarum polysaccharide can promote DCs function. This study is aimed at exploring the mechanism of LBP affecting DCs function from the perspective of metabolomics. MTT method was used to detect the activity of DC2.4 cells. ELISA kit method was used to detect the contents of IL-6, IL-12, and TNF-α in the supernatant of cells. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to detect general changes in DC2.4 cell metabolism. And then multidistance covariates and bioinformatics, partial least squares-discriminant analysis (PLS-DA) were used to analyze differential metabolites. Finally, metabolic pathway analysis was performed by MetaboAnalyst v5.0. The results showed that LBP had no significant inhibitory effect on the activity of DC2.4 cells at the experimental dose of 50-200 μg/ml. LBP (100 μg/ml) could significantly stimulate DC2.4 cells to secrete IL-6, TNF-α, and IL-12. Moreover, 20 differential metabolites could be identified, including betaine, hypoxanthine, L-carnitine, 5'-methylthioadenosine, orotic acid, sphingomyelin, and L-glutamine. These metabolites were involved 28 metabolic pathways and the top 5 metabolic pathways were aspartate metabolism, pyrimidine metabolism, phenylacetate metabolism, methionine metabolism, and fatty acid metabolism. These results suggest that the effect of LBP on DCs function is related to the regulation of cell metabolism.

MeSH terms

  • Dendritic Cells
  • Interleukin-12
  • Interleukin-6
  • Lycium* / chemistry
  • Polysaccharides / pharmacology
  • Tumor Necrosis Factor-alpha

Substances

  • lycium barbarum polysaccharide
  • Tumor Necrosis Factor-alpha
  • Interleukin-6
  • Polysaccharides
  • Interleukin-12