Trace Analysis of Emerging Virus: An Ultrasensitive ECL-Scan Imaging System for Viral Infectious Disease

ACS Omega. 2022 Oct 14;7(42):37499-37508. doi: 10.1021/acsomega.2c04280. eCollection 2022 Oct 25.

Abstract

Emerging infectious diseases have brought a huge impact on human society in recent years. The outbreak of Zika virus (ZIKV) in the Americas resulted in a large number of babies born with microcephaly. More seriously, the Coronavirus Disease 2019 (COVID-19) was globally spread and caused immeasurable damages. Thus, the monitoring of highly pathogenic viruses is important to prevent and control emerging infectious diseases. Herein, a dendritic polymer probe-amplified ECL-scan imaging system was constructed to realize trace analysis of viral emerging infectious diseases. A dendritic polymer probe was employed as the efficient signal emitter component that could generate an amplified ECL signal on the integrated chip, and the signal was detected by a single-photon level charge coupled device-based ECL-scan imaging system. With this strategy, the ZIKV in a complex system of blood, urine, and saliva was detected. The results indicated that a high sensitivity of 50 copies and superior specificity were achieved. Furthermore, this strategy realized highly sensitive detection (10 copies) of the S and N protein gene sequence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov2) and spiked pseudovirus samples. Thus, the dendritic polymer probe-amplified ECL-scan imaging system suitably met the strict clinical requirements for trace analysis of an emerging virus, and thus has the potential to serve as a paradigm for monitoring emerging infectious diseases.