Incidence of ischemic complications and technical nuances of arteries preservation for insular gliomas resection

Front Surg. 2022 Oct 14:9:956872. doi: 10.3389/fsurg.2022.956872. eCollection 2022.

Abstract

Introduction: Insular gliomas have complex anatomy and microvascular supply that make resection difficult. Furthermore, resection of insular glioma is associated with a significant risk of postoperative ischemic complications. Thus, this study aimed to assess the incidence of ischemic complications related to insular glioma resection, determine its risk factors, and describe a single surgeon's experience of artery-preserving tumor resection.

Methods: We enrolled 75 consecutive patients with insular gliomas who underwent transcortical tumor resection. Preoperative and postoperative demographic, clinical, radiological [including diffusion-weighted imaging (DWI)], intraoperative neurophysiological data, and functional outcomes were analyzed. Motor evoked potentials (MEPs) and radiological characteristics like the relationship between the proximal segment of the lateral lenticulostriate arteries (LLSAs) and the tumor, the flat inner edge sign (the inner edge of the insular glioma is well-defined) or obscure inner edge sign, the distance between the lesion and posterior limb of the internal capsule and the invasion of the superior limiting sulcus by the tumor were analyzed. Strategies such as "residual triangle," "basal ganglia outline reappearance," and "sculpting" technique were used to preserve the LLSAs and the main branches of M2 for maximal tumor resection according to the Berger-Sinai classification.

Results: Postoperative DWI showed acute ischemia in 44 patients (58.7%). Moreover, nine patients (12%) had developed new motor deficits, as determined by the treating neurosurgeons. The flat inner edge sign [odds ratio (OR), 0.144; 95% confidence interval (CI), 0.024-0.876) and MEPs (>50%) (OR, 18.182; 95% CI, 3.311-100.00) were significantly associated with postoperative core ischemia, which affected the posterior limb of the internal capsule or corona radiata.

Conclusions: Insular glioma resection was associated with a high incidence of ischemia, as detected by DWI, as well as new motor deficits that were determined by the treating neurosurgeons. Insular glioma patients with obscure inner edge signs and intraoperative MEPs decline >50% had a higher risk of developing core ischemia. With our strategies, maximal safe resection of insular gliomas may be achieved.

Keywords: insular gliomas; ischemia; lateral lenticulostriate arteries; middle cerebral artery; motor evoked potentials; surgery; surgical technique.