Phycosynthesis of Silver Nanoparticles Using Cladophora Glomerata and Evaluation of Their Ability to Inhibit the Proliferation of MCF-7 and L20B Cell Lines

Asian Pac J Cancer Prev. 2022 Oct 1;23(10):3563-3569. doi: 10.31557/APJCP.2022.23.10.3563.

Abstract

Background: Nanotechnology is receiving greater attention these days as a result of its applications in numerous industrial, medical, and environmental fields.

Objective: To synthesize silver nanoparticles with a green alga, Cladophora glomerata, and determine their inhibitory activity against tumor cell (MCF-7) and transgenic mouse cell (L20B) lines.

Materials and methods: Methanol extract was prepared from Cladophora glomerata and used as a safe factory for the synthesis of silver nanoparticles (AgNPs). UV-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, and EDX analyses were used to characterize the biosynthesized AgNPs. The anti-tumor activity of the phycosynthesized AgNPs was tested against the MCF-7 and L20B cell lines. Furthermore, the bioactive compounds in the algal extract were determined by gas chromatography-mass spectroscopy (GC-MS).

Results: The phycosynthesis produced clusters of spherical and polydispersed cuboidal pure AgNPs with an average size of 32 nm. The phycosynthesized AgNPs possess anti-cancer and anti-tumor activities on the MCF-7 and L20B cell lines, with significant anti-proliferation percentages of 52.8 and 65.8%, respectively, after 48 hours of treatment with 100 μg/ml AgNPs. Both treated cell lines showed a significant change in cellular shape and tissue detachment. The GC-MS analysis revealed the presence of a high proportion of octadecanoic acid (47.59%) and hexadecanoic acid (14.97%).

Conclusion: Cladophora glomerata contains chemicals that improve the stabilization and reduction properties of the nanoparticles. It can be used as a safe, local, and natural source for the synthesis of AgNPs and can also be used as a benign factory for many other metal nanoparticles. The phycosynthesized AgNPs have anti-cancer and anti-tumor activities on the test cell lines and provide an insight into the potential for using them as a trend in cancer nanotherapy.<br />.

Keywords: Eco-friendly; Macro-algae; Nanotechnology; Reducing agents; Sustainable sources.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Chlorophyta*
  • Humans
  • MCF-7 Cells
  • Metal Nanoparticles* / chemistry
  • Mice
  • Plant Extracts / chemistry
  • Plant Extracts / pharmacology
  • Silver / chemistry
  • Silver / pharmacology
  • Spectroscopy, Fourier Transform Infrared
  • X-Ray Diffraction

Substances

  • Silver
  • Plant Extracts
  • Anti-Bacterial Agents