Enhancing mechanical properties of flash-spun filaments by pressure-induced phase separation control in supercritical high-density polyethylene solution

Sci Rep. 2022 Oct 27;12(1):18030. doi: 10.1038/s41598-022-22781-1.

Abstract

Flash-spun nonwoven (FS-NW) is gaining attention in the PPE field due to its excellent barrier and mechanical properties resulting from its non-uniform diameter distribution and unique filament morphology. The unique network structure of flash-spun filaments (FSF) comprising the FS-NW can be controlled by phase separation behavior in the supercritical fluid (SCF) process. This study proposes a simple method to control the microstructure of FSFs by controlling the pressure-induced phase separation (PIPS) process in polymer/SCF solution. This phase separation behavior of an HDPE/SCF solution was confirmed by using a high-pressure view cell. A multistage nozzle allowing for phase-separated pressure to form different phases was also designed. HDPE-FSFs were synthesized by flash-spinning, and their morphology, crystallinity, and mechanical properties were investigated. The results demonstrated that the filaments obtained by PSP control at 220 °C and with an HDPE concentration of 8 wt% showed a network structure composed of strands, wherein the diameters ranged from 1.39 to 40.9 μm. Optimal FSF was obtained at 76 bar, with a crystallinity of 64.0% and a tenacity of 2.88 g/d. The PIPS method can thus effectively control the microstructure more feasibly than temperature- or solvent-induced techniques and can allow the effective synthesis of various products.