Anthropogenic noise may impair the mating behaviour of the Shore Crab Carcinus Maenas

PLoS One. 2022 Oct 27;17(10):e0276889. doi: 10.1371/journal.pone.0276889. eCollection 2022.

Abstract

Anthropogenic noise is a recent addition to the list of human-made threats to the environment, with potential and established negative impacts on a wide range of animals. Despite their economic and ecological significance, few studies have considered the impact of anthropogenic noise on crustaceans, though past studies have shown that it can cause significant effects to crustacean physiology, anatomy, and behaviour. Mating behaviour in crustaceans could potentially be severely affected by anthropogenic noise, given that noise has been demonstrated to impact some crustacean's ability to detect and respond to chemical, visual, and acoustic cues, all of which are vital in courtship rituals. To explore if noise has an impact on crustacean mating, we tested the responses of male green shore crabs (Carcinus maenas) from the southwest UK coast by exposing them to ship noise recordings while simultaneously presenting them with a dummy-female soaked in the female-sex pheromone uridine diphosphate (UDP) in an experimental tank setup (recording treatment: n = 15, control treatment: n = 15). We found a significant, negative effect of noise on the occurrence of mating behaviour compared to no noise conditions, though no significant effect of noise on the time it took for a crab to respond to the pheromone. Such effects suggest reproductive impairment due to anthropogenic noise, which could potentially contribute to decreased crustacean populations and subsequent ecological and economic repercussions. Given the findings of our preliminary study, more research should be undertaken that includes larger sample sizes, double blind setups, and controlled laboratory trials in order to more fully extrapolate the potential impact of noise on mating in the natural environment.

MeSH terms

  • Animals
  • Brachyura* / physiology
  • Female
  • Male
  • Noise* / adverse effects
  • Sex Attractants* / physiology

Substances

  • Sex Attractants

Grants and funding

The authors received no specific funding for this work.