In Silico Characterization of blaNDM-Harboring Conjugative Plasmids in Acinetobacter Species

Microbiol Spectr. 2022 Dec 21;10(6):e0210222. doi: 10.1128/spectrum.02102-22. Epub 2022 Oct 27.

Abstract

New Delhi metallo-β-lactamase (NDM)-producing clinical strains in Acinetobacter spp. have been recently reported in many countries and have received considerable attention. The vast majority of blaNDM cases occur on conjugative plasmids, which play a vital role in disseminating blaNDM. To characterize the conjugative plasmids bearing blaNDM genes in Acinetobacter spp., we analyzed the variants of blaNDM, conjugative transfer regions, genetic contexts of blaNDM, and the phylogenetic pattern of the 62 predicted blaNDM-positive plasmids, which were selected from 1,191 plasmids of Acinetobacter species from GenBank. We identified 30 conjugative plasmids from the 62 blaNDM-harboring plasmids in Acinetobacter species, with the oriT sites similar to plasmid pNDM-YR7 in our study, genes coding for relaxases of the MOBQ family, genes encoding type IV coupling proteins (T4CPs) of the TrwB/TraD subfamily, and VirB-like type IV secretion system (T4SS) gene clusters. The genome sizes of all 30 pNDM-YR7-like plasmids ranged from 39.36 kb to 49.65 kb, with a median size of 44.56 kb. The most common species of Acinetobacter containing the blaNDM-positive conjugative plasmids was A. baumannii, followed by Acinetobacter lwoffii and Acinetobacter indicus. Notably, pNDM-YR7 is the first report on a blaNDM-positive conjugative plasmid in Acinetobacter junii. Moreover, all 30 blaNDM-positive conjugative plasmids in Acinetobacter species were found to contain genetic contexts with the structure ISAba14-aph(3')-VI-ISAba125-blaNDM-ble. Our findings provide important insights into the phylogeny and evolution of blaNDM-positive plasmids of Acinetobacter species and further address their role in acquiring and spreading blaNDM genes in Acinetobacter species. IMPORTANCE Conjugative plasmids harboring the blaNDM gene play a vital role in disseminating carbapenem resistance. In this study, we first report a conjugative plasmid, pNDM-YR7, in Acinetobacter junii. Based on the genomic characteristics of the blaNDM-positive pNDM-YR7, we performed in silico typing and comparative analysis of blaNDM-positive plasmids using the 1,191 plasmids of Acinetobacter species available in the NCBI RefSeq database. We analyzed the characteristics of blaNDM-positive plasmids, including the variants of blaNDM, genetic features associated with blaNDM, conjugative transfer regions, and the phylogenetic pattern of the blaNDM-positive plasmids. All 30 blaNDM-positive conjugative plasmids were found to contain an ISAba14-aph(3')-VI-ISAba125-blaNDM-ble region. This study provides novel insights into the phylogeny and evolution of blaNDM-harboring conjugative plasmids and contributes to the repertoire of knowledge surrounding blaNDM-positive plasmids in the genus Acinetobacter.

Keywords: Acinetobacter; New Delhi metallo-β-lactamase; conjugative; plasmid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter* / genetics
  • Anti-Bacterial Agents / pharmacology
  • Microbial Sensitivity Tests
  • Phylogeny
  • Plasmids / genetics
  • beta-Lactamases / genetics

Substances

  • beta-Lactamases
  • Anti-Bacterial Agents

Supplementary concepts

  • Acinetobacter junii