The Interaction between Tegument Proteins ORF33 and ORF45 Plays an Essential Role in Cytoplasmic Virion Maturation of a Gammaherpesvirus

J Virol. 2022 Nov 23;96(22):e0107322. doi: 10.1128/jvi.01073-22. Epub 2022 Oct 27.

Abstract

Tegument, which occupies the space between the nucleocapsid and the envelope, is a unique structure of a herpesvirion. Tegument proteins are major components of tegument and play critical roles in virus life cycle. Murine gammaherpesvirus 68 (MHV-68), a member of the gammaherpesvirus subfamily, is closely related to two human herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). We have previously shown that MHV-68 ORF33, conserved among all herpesviruses, encodes a tegument protein that is associated with intranuclear capsids and is essential for virion morphogenesis and egress. Another tegument protein ORF45, which is conserved only among gammaherpesviruses, also plays an essential role in virion morphogenesis of MHV-68. In this study, we investigated the underlying mechanism and showed that these two proteins colocalize and interact with each other during virus infection. We mapped the ORF33-interacting domain to the conserved carboxyl-terminal 23 amino acids (C23) of ORF45. Deletion of the C23 coding sequence in the context of viral genome abolished the production of infectious virions. Transmission electron microscopy results demonstrated that C23 of ORF45 are essential for virion tegumentation in the cytoplasm. We further mapped the ORF45-interacting domain to the N-terminal 17 amino acids (N17) of ORF33. Deletion of the N17 coding sequence in the context of viral genome also abolished production of infectious virions, and N17 of ORF33 are also essential for virion tegumentation in the cytoplasm. Taken together, our data strongly indicate that the interaction between ORF45 and ORF33 plays an essential role in cytoplasmic maturation of MHV-68 virions. IMPORTANCE A critical step in viral lytic replication is the assembly of progeny viral particles. Herpesviruses are important pathogens. A herpesvirus particle comprises, from inside to outside, four layers: DNA core, capsid, tegument, and envelope. The tegument layer contains dozens of virally encoded tegument proteins, which play critical roles in virus assembly. Murine gammaherpesvirus 68 (MHV-68) is a tumor-associated herpesvirus and is closely related to Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. We previously found that the absence of either tegument protein ORF33 or ORF45 inhibits the translocation of nucleocapsids to the cytoplasm and blocks virion maturation, but the underlying mechanism remained unclear. Here, we showed that ORF33 interacts with ORF45. We mapped their interaction domains and constructed viral mutants with defects in ORF33-ORF45 interaction. Transmission electron microscopy data demonstrated that the assembly of these viral mutants in the cytoplasm is blocked. Our results indicate that ORF33-ORF45 interaction is essential for gammaherpesvirus replication.

Keywords: MHV-68; ORF33; ORF45; tegument; virus assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Capsid Proteins* / metabolism
  • Cytoplasm / metabolism
  • Herpesvirus 4, Human
  • Herpesvirus 8, Human
  • Immediate-Early Proteins* / metabolism
  • Mice
  • Rhadinovirus* / genetics
  • Rhadinovirus* / physiology
  • Virion / genetics
  • Virion / physiology
  • Virus Assembly*
  • Virus Replication

Substances

  • Capsid Proteins
  • ORF45 protein, murine gammaherpesvirus 68
  • Immediate-Early Proteins