Chelate Coordination Strengthens Surface Termination to Attain High-Efficiency Perovskite Solar Cells

Small Methods. 2022 Dec;6(12):e2201063. doi: 10.1002/smtd.202201063. Epub 2022 Oct 27.

Abstract

Solar cell efficiency and stability are two key metrics to determine whether a photovoltaic device is viable for commercial applications. The surface termination of the perovskite layer plays a pivotal role in not only the photoelectric conversion efficiency (PCE) but also the stability of assembled perovskite solar cells (PSCs). Herein, a strong chelate coordination bond is designed to terminate the surface of the perovskite absorber layer. On the one hand, the ligand anions bind with Pb cations via a bidentate chelating bond to restrict the ion migration, and the chelate surface termination changes the surface from hydrophilic to hydrophobic. Both are beneficial to improving the long-term stability. On the other hand, the formation of the chelating bonding effectively eliminates the deep-level defects including PbI and Pb clusters on the Pb-I and FA-I terminations, respectively, as confirmed by theoretical simulation and experimental results. Consequently, the PCE is increased to 24.52%, open circuit voltage to 1.19 V, and fill factor to 81.53%; all three are among the highest for hybrid perovskite cells. The present strategy provides a straightforward means to enhance both the PCE and long-term stability of PSCs.

Keywords: chelate coordinate; high-efficiency perovskite solar cells; long-term stability; surface termination.