Computational approaches for innovative anti-viral drug discovery using Orthosiphon aristatus blume miq against dengue virus

J Biomol Struct Dyn. 2023 Oct-Nov;41(18):8738-8750. doi: 10.1080/07391102.2022.2137238. Epub 2022 Oct 27.

Abstract

Dengue virus has emerged as infectious mosquito borne disease involved in lowering platelets and white blood cells (WBC) count particularly. The genome structure is based on several structural and non-structural proteins essential for viral replication and progeny. One of the major proteins of replication is non-structural protein 3 (NS3) that transforms polyproteins into functional proteins with a cofactor non-structural protein (NS2B). Heat Shock Protein 70 (HSP70), is a human protein that assists in replication, viral entry and virion synthesis. Therefore, to inhibit the spread of dengue infection, there is a need of antivirals targeting replication proteins and other human proteins that help in dengue virus multiplication. By systemic approach based on molecular docking, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties and molecular dynamic simulation (MD), potent inhibitors can be predicted. Inhibition of NS2B/NS3 dengue and HSP70 proteins involved in multiple steps in dengue virus progression can be prevented by using different phytochemicals. Molecular docking was performed using AutoDock Vina, PatchDock, and SwissDock. Interactions of obtained complex were observed in PyMOL and PLIP. Validation was checked by PROCHEK, simulation was performed using iMODS followed by preclinical testing by admetSAR. Ladanein, a flavonoid of Orthosiphon aristatus, was obtained as the lead compound to inhibit major replication protein of dengue virus with inhibitory potential against HSP70 protein. In summary, various in silico approaches were used to obtain the best phytochemical having anti-dengue potential.Communicated by Ramaswamy H. Sarma.

Keywords: Bioinformatics; dengue virus; heat shock protein; molecular dynamics; phytochemicals.