Cancer Progression Mediated by CAFs Relating to HCC and Identification of Genetic Characteristics Influencing Prognosis

J Oncol. 2022 Oct 15:2022:2495361. doi: 10.1155/2022/2495361. eCollection 2022.

Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most common malignancies, and although there are several treatment options, the overall results are not satisfactory. Cancer-associated fibroblasts (CAFs) can promote cancer progression through various mechanisms.

Methods: HCC-associated mRNA data were sourced from The Cancer Genome Atlas database (TCGA) and International Cancer Genome Consortium (ICGC) database. First, the differentially expressed CAF-related genes (CAF-DEGs) were acquired by difference analysis and weighted gene coexpression network analysis (WGCNA). Moreover, a CAF-related risk model was built by Cox analysis. Kaplan-Meier (K-M) curves and receiver operating characteristic (ROC) curves were utilized to evaluate the validity of this risk model. Furthermore, enrichment analysis of differentially expressed genes (DEGs) between the high- and low-risk groups was executed to explore the functions relevant to the risk model. Furthermore, this study compared the differences in immune infiltration, immunotherapy, and drug sensitivity between the high- and low-risk groups. Finally, we verified the mRNA expression levels of selected prognostic genes by quantitative real-time polymerase chain reaction (qRT-PCR).

Results: 107 CAF-DEGs were identified in the HCC samples, and five prognosis-related genes (ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1) were obtained by Cox analysis and utilized to build a CAF-related risk model. K-M analysis illustrated a low survival in the high-risk group, and ROC curves revealed that the risk model could accurately predict the 1-, 3-, and 5-year overall survival (OS) of HCC patients. In addition, Cox analysis demonstrated that the risk score was an independent prognostic factor. Enrichment analysis illustrated that DEGs between the high- and low-risk groups were related to immune response, amino acid metabolism, and fatty acid metabolism. Furthermore, risk scores were correlated with the tumor microenvironment, CAF scores, and TIDE scores, and CAF-related marker genes were positively correlated with all five model genes. Notably, the risk model was relevant to the sensitivity of chemotherapy drugs. Finally, the results of qRT-PCR demonstrated that the expression levels of 5 model genes were in accordance with the analysis.

Conclusion: A CAF-related risk model based on ACTA2, IGJ, CTHRC1, CXCL12, and LAMB1 was built and could be utilized to predict the prognosis and treatment of HCC.