Electrically reconfigurable waveguide Bragg grating filters

Opt Express. 2022 Oct 24;30(22):39643-39651. doi: 10.1364/OE.473018.

Abstract

We propose and demonstrate an electrically reconfigurable waveguide Bragg grating filters in silicon-on-insulator using a multiple-contact heater element. There are six electrical pads connected to the heater element in an equidistant manner. These electrical pads allow to create different heat, and corresponding refractive index, distributions across the grating so that the local Bragg wavelength corresponding to the heated segments can be controlled. In turn, this control over the heat distribution allows the device to be reconfigured to implement different filter spectral responses. These filters are applicable for both wavelength division multiplexing systems and optical signal processing applications. As a verification, we demonstrate the generation of two (or more) separate filter bands with a spacing up to 35 nm or a Fabry-Pérot cavity with a 1.6 nm free-spectral range. Moreover, we explain a firm and accurate simulation framework of the proposed device based on COMSOL Multiphysics and the transfer matrix method, which is in excellent agreement with our experimental measurements.