Soil Moisture Sensor Information Enhanced by Statistical Methods in a Reclaimed Water Irrigation Framework

Sensors (Basel). 2022 Oct 21;22(20):8062. doi: 10.3390/s22208062.

Abstract

Time series modeling and forecasting play important roles in many practical fields. A good understanding of soil water content and salinity variability and the proper prediction of variations in these variables in response to changes in climate conditions are essential to properly plan water resources and appropriately manage irrigation and fertilization tasks. This paper provides a 48-h forecast of soil water content and salinity in the peculiar context of irrigation with reclaimed water in semi-arid environments. The forecasting was performed based on (i) soil water content and salinity data from 50 cm beneath the soil surface with a time resolution of 15 min, (ii) hourly atmospheric data and (iii) daily irrigation amounts. Exploratory data analysis and data pre-processing phases were performed and then statistical models were constructed for time series forecasting based on the set of available data. The obtained prediction models showed good forecasting accuracy and good interpretability of the results.

Keywords: infiltration; irrigation with reused water; soil salinity; soil water content; time series.

MeSH terms

  • Agricultural Irrigation* / methods
  • Climate
  • Salinity
  • Soil*
  • Water

Substances

  • Soil
  • Water

Grants and funding