Automatic Recognition of Giant Panda Attributes from Their Vocalizations Based on Squeeze-and-Excitation Network

Sensors (Basel). 2022 Oct 20;22(20):8015. doi: 10.3390/s22208015.

Abstract

The giant panda (Ailuropoda melanoleuca) has long attracted the attention of conservationists as a flagship and umbrella species. Collecting attribute information on the age structure and sex ratio of the wild giant panda populations can support our understanding of their status and the design of more effective conservation schemes. In view of the shortcomings of traditional methods, which cannot automatically recognize the age and sex of giant pandas, we designed a SENet (Squeeze-and-Excitation Network)-based model to automatically recognize the attributes of giant pandas from their vocalizations. We focused on the recognition of age groups (juvenile and adult) and sex of giant pandas. The reason for using vocalizations is that among the modes of animal communication, sound has the advantages of long transmission distances, strong penetrating power, and rich information. We collected a dataset of calls from 28 captive giant panda individuals, with a total duration of 1298.02 s of recordings. We used MFCC (Mel-frequency Cepstral Coefficients), which is an acoustic feature, as inputs for the SENet. Considering that small datasets are not conducive to convergence in the training process, we increased the size of the training data via SpecAugment. In addition, we used focal loss to reduce the impact of data imbalance. Our results showed that the F1 scores of our method for recognizing age group and sex reached 96.46% ± 5.71% and 85.85% ± 7.99%, respectively, demonstrating that the automatic recognition of giant panda attributes based on their vocalizations is feasible and effective. This more convenient, quick, timesaving, and laborsaving attribute recognition method can be used in the investigation of wild giant pandas in the future.

Keywords: SENet; attribute recognition; bioacoustics; deep learning; giant panda; species conservation.

MeSH terms

  • Animals
  • Ursidae*