Enhancement of Piezoelectric Properties of Flexible Nanofibrous Membranes by Hierarchical Structures and Nanoparticles

Polymers (Basel). 2022 Oct 11;14(20):4268. doi: 10.3390/polym14204268.

Abstract

Piezoelectric nanogenerators (PENGs) show superiority in self-powered energy converters and wearable electronics. However, the low power output and ineffective transformation of mechanical energy into electric energy l limit the role of PENGs in energy conversion and storage devices, especially in fiber-based wearable electronics. Here, a PAN-PVDF/ZnO PENG with a hierarchical structure was designed through electrospinning and a hydrothermal reaction. Compared with other polymer nanofibers, the PAN-PVDF/ZnO nanocomposites not only showed two distinctive diameter distributions of uniform nanofibers, but also the complete coverage and embedment of ZnO nanorods, which brought about major improvements in both mechanical and piezoelectric properties. Additionally, a simple but effective method to integrate the inorganic nanoparticles into different polymers and regulate the hierarchical structure by altering the types of polymers, concentrations of spinning solutions, and growth conditions of nanoparticles is presented. Further, the designed P-PVDF/ZnO PENG was demonstrated as an energy generator to successfully power nine commercial LEDs. Thus, this approach reveals the critical role of hierarchical structures and processing technology in the development of high-performance piezoelectric nanomaterials.

Keywords: ZnO nanorods; electrospinning; piezoelectric property; poly(vinylidene fluoride); polyacrylonitrile.