Heterostructured α-Bi2O3/BiOCl Nanosheet for Photocatalytic Applications

Nanomaterials (Basel). 2022 Oct 16;12(20):3631. doi: 10.3390/nano12203631.

Abstract

Photocatalytic degradation of organic pollutants in wastewater is recognized as a promising technology. However, photocatalyst Bi2O3 responds to visible light and suffers from low quantum yield. In this study, the α-Bi2O3 was synthetized and used for removing Cl- in acidic solutions to transform BiOCl. A heterostructured α-Bi2O3/BiOCl nanosheet can be fabricated by coupling Bi2O3 (narrow band gap) with layered BiOCl (rapid photoelectron transmission). During the degradation of Rhodamine B (RhB), the Bi2O3/BiOCl composite material presented excellent photocatalytic activity. Under visible light irradiation for 60 min, the Bi2O3/BiOCl photocatalyst delivered a superior removal rate of 99.9%, which was much higher than pristine Bi2O3 (36.0%) and BiOCl (74.4%). Radical quenching experiments and electron spin resonance spectra further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the photodegradation process. This work develops a green strategy to synthesize a high-performance photocatalyst for organic dye degradation.

Keywords: Bi2O3; dechlorination; heterostructure; organic dye; photocatalytic degradation.