Electro-Design of Bimetallic PdTe Electrocatalyst for Ethanol Oxidation: Combined Experimental Approach and Ab Initio Density Functional Theory (DFT)-Based Study

Nanomaterials (Basel). 2022 Oct 14;12(20):3607. doi: 10.3390/nano12203607.

Abstract

An alternative electrosynthesis of PdTe, using the electrochemical atomic layer deposition (E-ALD) method, is reported. The cyclic voltammetry technique was used to analyze Au substrate in copper (Cu2+), and a tellurous (Te4+) solution was used to identify UPDs and set the E-ALD cycle program. Results obtained using atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques reveal the nanometer-sized flat morphology of the systems, indicating the epitaxial characteristics of Pd and PdTe nanofilms. The effect of the Pd:Te ratio on the crystalline structure, electronic properties, and magnetic properties was investigated using a combination of density functional theory (DFT) and X-ray diffraction techniques. Te-containing electrocatalysts showed improved peak current response and negative onset potential toward ethanol oxidation (5 mA; -0.49 V) than Pd (2.0 mA; -0.3 V). Moreover, DFT ab initio calculation results obtained when the effect of Te content on oxygen adsorption was studied revealed that the d-band center shifted relative to the Fermi level: -1.83 eV, -1.98 eV, and -2.14 eV for Pd, Pd3Te, and Pd3Te2, respectively. The results signify the weakening of the CO-like species and the improvement in the PdTe catalytic activity. Thus, the electronic and geometric effects are the descriptors of Pd3Te2 activity. The results suggest that Pd2Te2 is a potential candidate electrocatalyst that can be used for the fabrication of ethanol fuel cells.

Keywords: DFT calculation; PdTe nanofilms; ethanol oxidation reaction; oxygen binding energy; underpotential deposition.